Coronary Artery CTA Pitfalls
Jared D. Christensen, MD

Pitfalls in Coronary Artery CTA

Coronary Artery CTA
- High negative-predictive value (>99%)*
- Requires high quality study

High Quality Acquisition
- HR ≤ 60 bpm
- NSR
- Coronary artery dilation (nitrates)
- Proper contrast bolus & timing
- ECG-gating

DISCLOSURES

Coronary Artery CTA
- High negative-predictive value (>99%)*
- High Quality Acquisition
- Low Quality Acquisition

Objectives
- Review common pitfalls in the performance and interpretation of coronary artery CTA
- How to minimize them
Common Pitfalls

<table>
<thead>
<tr>
<th>Technical</th>
<th>Motion</th>
<th>Blooming</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup</td>
<td>Blurring</td>
<td>Calcium</td>
<td>Segmentation</td>
</tr>
<tr>
<td>Noise</td>
<td>Stairstep</td>
<td>Stents</td>
<td>Misregistration</td>
</tr>
</tbody>
</table>

Technical

44-yo male - Evaluate SVG patency

44-yo male - Evaluate SVG patency

Z-Axis coverage

Scout

Inadequate z-axis

Excluded saphenous vein grafts

Normal CTA z-axis
Z-Axis Coverage

- Clinical information crucial in exam setup
- Setting z-axis:
 - Scout images
 - Low dose (~80 mA) non-contrast scan

Contrast

- Error in delivery:
 - Extravasation
 - Low volume
 - Slow rate
 - Missed timing

Mixing artifact

Scanned Too Early
Ideal enhancement in the ascending aorta:

300-350 HU

Weininger et al. AJR 2011; 196: W260-W272

Injection Rate

Rate: 6 cc/s

Injection Rate

Rate: 8 cc/s

Streak Artifact

Without Saline Bolus

With Saline Bolus

Why is this a bad scan?

Noise
Noise

Problem
- Not enough photons to create an image

Solution
- Increase kVp
- Increase mA
- Increase scan time

\[\uparrow \text{Radiation} \]

Noise

Problem
- Not enough photons to create an image

Solution
- Increase FOV
- Increase slice thick
- Smooth kernel

\[\downarrow \text{Spatial Res} \]

Noise

Problem
- Not enough photons to create an image

Solution
- Iterative Recon

\[\downarrow \text{Radiation} \]
\[\uparrow \text{Spatial Res} \]

Iterative Reconstruction

- Coronary Artery CTA - IR vs. FBP:
 - Reduced image noise \[\downarrow 26 - 35\% \]
 - Statistically significant increase in diagnostic segments

Leipsic et al. AJR, 2010; 195: 649-654

Motion

- Factors in coronary motion artifacts:
 - High HR
 - Variable HR
 - Respiratory motion
 - Scan times
Heart Rate

- Slow HR = more time in diastole

55 bpm
75 bpm

Motion

- Blur
 - Rapid HR impairs segmental diagnostic assessment

PDA RCA LCx

Motion - Blur

- Not always easy to identify
- May mimic pathology

HR: 81 bpm

Motion - Blur

Artifact

HR: 81 bpm

Motion - Blur

Artifact

Heart Rate control is most important factor

Phase Selection

- Reconstruct in R-R phase of least motion:
Phase Selection

- Prospective gating - 70% center, 100 ms padding on each side

Motion

- **Blur**
 - Rapid HR impairs segmental diagnostic assessment
- **Stairstep**
 - HR variability affects all vessels

Stairstep

- Phase misregistration during prospective acquisition & reconstruction

<table>
<thead>
<tr>
<th>Artifact</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blur</td>
<td>Rapid HR</td>
<td>β-blockers, Faster scanning</td>
</tr>
<tr>
<td>Stairstep</td>
<td>Variable HR</td>
<td></td>
</tr>
</tbody>
</table>
Dual Source CTA

- Reduced scan time
- Reduced contrast volume
- Reduced radiation
- Improved spatial and temporal resolution
- Reduced need for β-blockade

Mett et al. AJR, 2007; 189: 567-573

Dual Source CTA

- 3 sec scan
- 50 cc contrast
- No β-blockade

2.1 mSv

Blooming

- Focus appears larger than it really is - obscures lumen and overestimates stenosis
- Occurs at interface of very high attenuation
 - Calcifications
 - Stents

Is this a High Grade Lesion?

Window/Level Settings

- 800/100
- 1200/200
- 1400/300
Kernel Selection

Iterative Reconstruction

Compared to FBP, iterative reconstruction:
- reduces image noise
- increases accuracy, specificity, & PPV
- reduces unnecessary follow-up exams

Renker et al. Radiology 2011; 260: 390-399

Is this a high-grade stenosis?

Renker et al. Radiology 2011; 260: 390-399

> 70%

> 70% ~ 50%
Processing

Segmentation Error

Tracking from artery into vein

Segmentation Error

Is this a real defect?

Blooming

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Lumen obscured adjacent to calcified plaque or within stent | - Increase FOV
- Reduce slice thickness
- Correct window/level
- Hard kernel
- Iterative recon |

Segmentation

- MIPs, CPRs
- Check center lines
- Verify any abnormality on source images, additional views or phases
Segmentation Error

ECG-Editing

- Improve motion artifact associated with isolated irregular heart rate

ECG-Editing

- Resolves with centerline correction

ECG-Editing

- PVC 1
- PVC 2
Post ECG-Editing

ECG-Editing

- Improve motion artifact associated with isolated irregular heart rate
- Improve streak artifact associated with cardiac pacing leads in RCA assessment*

Conclusions
Conclusions

- Optimization of technical parameters are essential for high quality imaging
- Most common artifacts are due to motion, calcifications, or processing errors
- Dual energy CTA, iterative reconstruction, and ECG-editing can minimize pitfalls

Iterative reconstruction facilitates coronary artery CTA interpretation by:

A. Increasing spatial resolution
B. Permitting lower scan dosing
C. Reducing blooming artifact
D. All of the above