Imaging of the patient with Thoracic Outlet Syndrome

Constantine A. Raptis, MD
Director of Thoracic MRI
Mallinckrodt Institute of Radiology
St. Louis, MO

Please note that for this version for the syllabus, I have omitted the cases/images that will be included in the presentation.

No disclosures

Goals of this presentation

• Review the imaging modalities used in the evaluation of the patient with suspected thoracic outlet syndrome
• Present imaging findings associated with the diagnosis of thoracic outlet syndrome
• Discuss common postoperative complications of corrective surgery

What is the thoracic outlet?

• Extends from the cervical spine and mediastinum to the lower border of the pectoralis minor muscle
• 3 compartments:
 – Interscalene triangle
 – Costoclavicular space
 – Retropectoralis minor space

What is Thoracic Outlet Syndrome?

• Compression of the neurovascular structures that traverse the thoracic outlet
• More common in patients less than 40 years old
• F:M approximately 4:1
It’s really three diseases

• Neurogenic syndrome
• Arterial syndrome
• Venous syndrome
• Typically, neurogenic syndrome thought to account for over 90% of cases, but this may be an overestimate and be due to recruitment bias

Role of imaging prior to surgery

• Important to detect anatomic abnormalities
• Helpful in discriminating neurogenic from vascular thoracic outlet syndrome
 – Some centers more likely to manage neurogenic thoracic outlet syndrome conservatively
• Evaluate for other etiologies for the patient’s symptoms

Choice of modalities

• Plain radiographs
 – Excellent for initial survey of bony abnormalities
• Ultrasound
 – Can be used to look for thrombus, dilated collaterals, positional changes
• CT
 – Excellent for bony abnormalities, but has radiation concerns in typically young population
• MRI
 – Modality of choice for evaluation of vascular TOS
• Angiography
 – Choice for the acutely symptomatic patient as it provides a means of treatment

Conventional Radiographs

• Cervical rib
 – Less than 1% of the population, but seen in 5–10% of patients with TOS
 – Arises from C7
 – Can be complete or incomplete
 – Often associated with a fibrous band

Symptoms

• Neurogenic: Pain and paresthesia
 – Neck, ear, occipital region, upper back, clavicle, chest, arm -> depends on where compression is
• Arterial: Weakness, cold, pain, embolic phenomena
• Venous: Swelling and cyanosis, venous distension
• Provocative maneuvers are important in the physical exam

Conventional Radiographs

• Elongated transverse process of C7
 – Considered elongated if tip extends below transverse process of T1 below
 – Can also be associated with fibrous band
Conventional Radiographs
- Anomalous first rib
 - Fuses to second rib rather than sternum
- Abnormal first ribs or clavicle
 - Old fractures
 - Exostoses

Ultrasound
- Can assess blood flow during clinical maneuvers
- Frequently relies on indirect signs of more proximal arterial stenosis
- Difficult to image exact level of stenosis
- Can be performed with patient upright
- At our institution, ultrasound for TOS typically only done in office and as an adjunct to CT or MRI

Angiography
- Typically reserved for the patient presenting with acute symptoms suspicious for venous TOS
- Venogram performed with arms at varying degrees of abduction
- If thrombus is detected, a declot can be performed

Computed Tomography
- Technique
 - IV on asymptomatic side
 - Split bolus (5 minutes between injections)
 - 4 cc/sec injection
 - First run: Arm of interest up, head towards ipsilateral side
 - Time off aorta
 - Then venous phase at 90 seconds
 - Second run: Arm of interest down
 - Time off aorta
 - Then venous phase at 90 seconds

Magnetic Resonance Imaging
- Technique
 - Phased array coil
 - IV on asymptomatic side
 - Contrast agent choice
 - Intravascular agent (1 cc/sec)
 - Allows for single injection
 - Will have venous opacification on all runs after initial arterial phase
 - Extracellular agent (2 cc/sec)
 - Can get pure arterial phase with arms up and arms down
 - Requires two injections

Magnetic Resonance Imaging
- Protocol (for intravascular agent)
- Arms at side
 - TSE T1 Hi-res coronal
 - TSE T1 Hi-res axial
 - Test bolus timed for arch
 - 3D VIBE axial breath hold centered at arch (pre contrast)
 - 3D MRA coronal breath hold (pre contrast)
 - Give contrast
 - 3D MRA coronal breath hold (post contrast x 3)
 - Run 1 timed for aorta, Run 2 after 12 seconds, then Run 3 after 40 seconds
 - 3D VIBE axial breath hold (post contrast)
MRI Technique Continued

• Arms above head, head to symptomatic side
 – 3D MRA coronal breath hold x2
 – 3D VIBE axial breath hold
 – No need to reboatus patient when using an intravascular agent
• Post processing
 – Obtain subtractions and MIPs as needed

MRI for brachial plexus

• Not routinely performed at our institution, focus is on vascular etiologies
• Can evaluate brachial plexus by adding supplemental T1 Hi-res sagittal images with arms up and arms down

Findings on cross sectional imaging

• Arterial TOS
 – Arterial compression with arms elevated
 – Post-stenotic dilatation
 – Aneurysm or pseudoaneurysm formation
 – Collaterals
 – Fibrous bands
 – Thrombus (rare)
• Venous TOS
 – Venous compression with arms elevated
 – Significance of venous compression can be difficult to determine given predisposition of even moderate venous narrowing with positional changes in normal individuals
 – Thrombus
 – Fibrous bands
 – Enlarged collateral vessels
• Neurogenic TOS
 – Loss of fat surrounding brachial plexus with arms elevated

Imaging the post-operative patient

• Many surgical techniques available for thoracic outlet syndrome decompression
 – Different approaches
 – Most resect the entirety of the first rib and cervical ribs
 – Resection of muscles about the thoracic inlet is variable
 – Vascular reconstruction or stenting may be necessary
• Many surgeons intentionally violate the apical pleura to provide a means of decompression of postoperative fluid/hematoma into the pleural space

Imaging the post-operative patient

• Expected findings on postoperative chest radiographs
 – Small or moderate pleural fluid collections
 – Small pneumothorax
 – Extrapleural hematoma at apex

• Potential complications
 – Hemothorax
 – Chylothorax
 – Pneumothorax
 – Supraclavicular infection or hematoma
 – Pulmonary infection
 – Lung herniation
 – Nerve damage
 – Vascular injury/rethrombosis
Patients presenting with symptoms after previous decompression

- Imaging may be necessary to see exactly what procedure was performed
- Often important to assess the amount of remnant first rib
 - This is best done with CT
 - Complete resection involves resection of entire first rib posteriorly to the costovertebral junction and anteriorly to junction with sternum

Delayed presentation

- Grafts and stents prone to restenosis
 - Can evaluate with CT or MRI
 - Many of these patients go straight to angiography for attempted declot
- Imaging the contralateral side is often important as bilateral TOS is not uncommon

Conclusion

- Imaging of patients with thoracic outlet syndrome plays an important role in diagnosis and postoperative care
- CT and MRI remain the key imaging modalities for evaluating thoracic outlet syndrome patients, with CT preferred for investigating bony abnormalities and MR preferred for vascular and soft tissue abnormalities
- Knowledge of expected imaging findings in TOS patients is essential for accurate diagnosis

References/Suggested Reading