Lung Ablation: Treatment Options for Localized Lung Cancer

Carole A. Ridge, MD (no SAM)

Disclosure

• Neither I nor my family members have a financial relationship with or have an affiliation with supporting companies or organizations about whose products or services are mentioned in this lecture.

Lecture Outline

• Ablation mechanisms
• Indications
• Identifying the ideal ablation candidate
• Reported outcomes
• Surveillance
• Future directions

Lung Ablation

• Tissue temperatures > 55°C
 — Coagulation necrosis
• Tissue temperatures > 99 °C
 — Tissue dehydration and charring
 — Lower electrical conductivity
 — Increased impedance
• Lung tissue
 — Low electrical conductivity
 — Low thermal conductivity
• Heat sink effect

Radiofrequency Ablation

• Delivery of electrical current to probe tip
• Molecules vibrate rapidly
• Frictional energy loss
• Rise in tissue temperature “the Joule effect”

Radiofrequency Ablation

• Relies on electrical conductivity
• Peripheral tissues heated by thermal conduction
• Limited by charred tissue
Microwave Ablation

• Electromagnetic frequency applied to tissue
• Water molecules continuously realign with field
 – Dielectric hysteresis
• Increased kinetic energy and temperatures
• Thermal conduction
• Not reliant on electric conductivity

Cryoablation

• Release of high-pressure argon at probe tip
• Rapid drop in temperature
• Probe is sequentially cooled and warmed

Irreversible Electroporation

• Non-thermal ablation
 – High voltage pulsed electric field
 – Permanent nanopores
 – Apoptosis
• Respects tissue interfaces

Ablation Mechanisms

Cryoablation

• Rapid Freeze
• Gradual Freeze
• Thaw
• Repeated freeze thaw cycle extends tissue destruction

Practical Implications

• RFA:
 – Target temperature > 57°C < 99°C
 – Probe cooling
 – Impedance based pulsing (<1000 Ω)
• MWA
 – Thermocouple
 – Internally cooled probe
 – Continuous power application
Practical Implications

• Cryoablation
 – Peripheral lesions/sensitive locations
 – No electrical circuit, safe for pacemakers
 – Iceball enables “stick”
 – Target temperature -150°C

Indications

• Medically inoperable stage I non-small cell lung carcinoma
 – Interdisciplinary team
 – Maximum tumor diameter 3-3.5 cm
 – RFA endorsed by NICE and ACCP guidelines
• Solitary pulmonary nodule after standard therapy of stage IIIa lung tumours
• Pulmonary metastases where the primary disease is controlled in a poor surgical candidate

The Ideal Ablation Candidate

• Ineligible for surgical resection
 – Cardiorespiratory comorbidity
 – Insufficient vital lung function
• ECOG status < 3
• Life expectancy > 1 year
• Lesion < 3-3.5 cm
• Lesion > 1 cm from:
 – Trachea
 – Main bronchi
 – Esophagus
 – Central vessels

Exclusion Criteria for Lobectomy

• Major
 – FEV1 < 50%
 – DLCO < 50%
• Minor
 – Age >75
 – FEV1 51-60%
 – DLCO 51-60%
 – Pulmonary hypertension
 – EF < 40%
 – Sp02< 88%

Outcomes

• Limited literature on stage I lung cancer alone
• RFA most studied modality
• Microwave and cryo-ablation data includes:
 – Primary lung and metastatic lesions
 – Varied indications
• Long-term survival data for stage I lung cancer treated with microwave and cryoablation awaited
• SBRT data includes operable patients

Pooled Analysis: Outcomes

<table>
<thead>
<tr>
<th>Modality</th>
<th>Number of studies</th>
<th>Local recurrence (%)</th>
<th>3-year survival (%)</th>
<th>5-year survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA</td>
<td>9</td>
<td>29</td>
<td>36-88</td>
<td>19-27</td>
</tr>
<tr>
<td>MWA</td>
<td>1</td>
<td>26</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Cryotherapy</td>
<td>2</td>
<td>7</td>
<td>77-88</td>
<td>NR</td>
</tr>
<tr>
<td>SBRT</td>
<td>17</td>
<td>7</td>
<td>32-85</td>
<td>28-51</td>
</tr>
</tbody>
</table>
Surveillance

- **Timing of Imaging**
 - Acquire new baseline imaging within 2 months
 - Image every 3 months for 1st year
- **Caveats**
 - Inflammatory response resolves by 2-3 months
 - Complete disappearance is rare
- **Clinical follow-up**

Expected CT Appearance

- **Initial**
 - Ground glass halo
 - Consolidation
 - Density increase
- **From 3 months**
 - Four patterns
 - Residual nodule
 - Fibrosis
 - Atelectasis
 - Cavitation
 - Effusion

Expected PET CT Appearance

- **Initially FDG non avid**
- **3-6 months**
 - FDG avid rim
- **6-12 months**
 - Stable or decreased FDG avid rim

Recurrence

- **CT**
 - New enhancement in the ablation zone
 - Peripheral nodular growth
 - Change from ground-glass to solid
 - Adenopathy
- **PET**
 - Increased metabolic activity > 2 months post ablation
 - Central or nodular metabolic activity

Future Directions

- Good quality data for microwave and cryoablation
- Synergistic effect of ablation and radiation
 - Local recurrence rate 9-12%*
- Role for IRE
- Immunologic/molecular agents
 - Ablation may induce anti-tumor immunity
 - Combination with EGFR inhibitors

*Grasso CA. Vasc Interv Radiol. 2006
Dupuy DE. Chest 2006
Summary

• Alternative therapy for medically inoperable stage I lung carcinoma
• Modalities differ significantly
• Lesion size is critical
• Need for long term data and multicenter trials
 – New ablation techniques
 – Comparison to other therapies
• Clinical and radiologic follow up is important

Acknowledgments

• SB Solomon
 – Memorial Sloan Kettering Cancer Center, USA
• Evelyn Pence
 – Pence Studio, USA