Imaging of Community Acquired Pneumonia:

Goals and Objectives
- Know a CT pattern based differential diagnosis for non-infectious alternatives to pneumonia and the relative likelihood of those diagnoses
- Know the spectrum of CT manifestations of viral lower respiratory infections

Community Acquired Pneumonia
- Detection of Infection
 - CXR
 - US
- Differentiation of infections from non-infectious lung disease
 - CT Pattern approach
- Detection of complications
- Identification of Specific Organisms (rarely)
 - Viral pneumonia

Patients Hospitalized with Clinical Diagnosis Pneumonia
- Radiograph = Pneumonia
 - Pos Blood Cultures 8% (Majority Strep Pneumonia)
 - Mortality 10%
- Radiograph ≠ Pneumonia
 - Pos Blood Cultures 6% (Majority GNR)
 - Mortality 8%

Radiographic Detection of Community Acquired Pneumonia
- Reader concordance high for involved lobes and presence of effusion
- Concordance low for specific findings
 - Pattern of involvement (e.g. bronchopneumonia)
 - Presence of bronchial wall thickening
 - Presence of air bronchograms
- Differentiating pneumonia from non-infectious pulmonary disease often difficult

US for the Diagnosis of Pneumonia
- Often performed by non-radiologists
- Euro-centric currently
- Landmarks
 - Pleural line – Echogenic line, sliding with respiration
 - A-Lines – Echogenic parallel lines within the lung
 - B lines ring-down artifacts perpendicular to pleural surface
 - Extending length of field of view
- Pathology
 - Interstitial syndrome – >3 B lines (in field of view)
 - Alveolar syndrome – Loss of pleural line, air or liquid filled bronchograms
- Parlamento, 2009 Am J Emerg Med
US for the Diagnosis of Pneumonia

- Prospective study –
 - 144 patients
 - Either “interstitial” or “alveolar” considered positive
 - Sensitivity, Specificity CXR = 60%, 57%
 - Sensitivity, Specificity US = 95%, 76%
- *Gold standard Dx* = imaging and clinical composite
- Awaits US/CT correlative imaging done by radiologists

CT Patterns: Relevant to Infection

- Septal thickening (extensive)
- Nodules
 - Centrilobular ground glass (GG)
 - Centrilobular soft tissue (acinar nodules)
 - Centrilobular with Tree in Bud (TIB)
 - Random
 - Perilymphatic
 - Lobular ground glass and consolidation
- Consolidation
 - Nonsegmental
 - Segmental

Radiographic Equivalent of Septal Thickenings

- Linear Interstitial Pattern
 - Congestive Failure
 - Hantavirus Pulmonary Syndrome

CT Pattern: Septal Thickening

- Infections - Rare
 - Hantavirus, rickettsial diseases (RMSF)
- Non-infectious - Common
 - CHF
 - Acute eosinophilic pneumonia, Drug reaction*

- *Less likely to have pleural effusion

Acute Eosinophilic Pneumonia

CT Pattern: Centrilobular Ground Glass (GG) Nodules

- Cellular Bronchiolitis
 - 1-3 mm
 - 1 cm
 - Pleura
 - Pleural surfaces spared

Difficult to detect on chest radiograph
CT Pattern: Centrilobular Ground Glass Nodules
- Non-Infectious disease is common
- Hypersensitivity pneumonitis
- Respiratory bronchiolitis
- Pulmonary hemorrhage/vasculitis
- Difficult to detect on chest radiograph

CT Pattern: Centrilobular Ground Glass Nodules
- Non-Infectious disease is common
- Hypersensitivity pneumonitis
- Respiratory bronchiolitis
- Pulmonary hemorrhage/vasculitis
- Difficult to detect on chest radiograph

CT Pattern: Centrilobular Ground Glass Nodules
- Non-Infectious disease is common
- Hypersensitivity pneumonitis
- Respiratory bronchiolitis
- Pulmonary hemorrhage/vasculitis
- Difficult to detect on chest radiograph

CT Pattern: Centrilobular Ground Glass Nodules
- Non-Infectious disease is common
- Hypersensitivity pneumonitis
- Respiratory bronchiolitis
- Pulmonary hemorrhage/vasculitis
- Difficult to detect on chest radiograph

CT Pattern: Centrilobular Nodules
- Acinar consolidation
- Often associated with TIB
- Heterogeneous in size
- Patchy
- Non-infectious causes
- Usually chronic disease
- PLCH, invasive adenoCa

CT Pattern: Centrilobular Soft Tissue
- Centrilobular Nodules
- Ground Glass
- 1-3 mm
- Pleura

CT Pattern: Centrilobular Nodules
- Centrilobular Nodules
- Soft Tissue
- 5-7 mm
- Pleura

CT Pattern: Centrilobular Nodules
- Centrilobular Nodules
- Tree in Bud Pattern (TIB)
- Pleura

CT Pattern: Centrilobular Nodules
- Tree in Bud Pattern (TIB)
- Pleura
CT Patterns : Centrilobular Nodules with Tree in Bud
- Infectious: More Common
 - Bacterial - e.g. H. influenza
 - Mycoplasma – usually adults
 - Viral
- Can have associated bronchial wall thickening
- Non Infections: Aspiration

CT Pattern: Random Nodules (miliary)
- Diffuse, randomly contact interlobular septa and pleural surfaces
- Infection – Miliary tuberculosis, Disseminated endemic fungi
- Non-infectious – Metastatic neoplasm

CT Pattern: Nodules Perilymphatic
- Nodules favor
 - Interlobular Septa
 - Pleural Surfaces
 - Centrilobular area (Peribronchial lymphatics)
- “Clumpy” rather than diffuse

CT Pattern: Perilymphatic Nodules
- Sarcoid, lymphangitic cancer, and silicosis
- Usually NOT from infection

Etiology of Micronodules?
- Nodule pattern
 - Centrilobular with TIB
 - Centrilobular soft tissue
 - Random
 - Centrilobular GG
 - Perilymphatic
- Etiology
 - Infection >> Non-infection
 - Infectious>Non-infectious
 - Infection/Non-infection
 - Non-infectious > Infection
 - Non-infectious

Okada, Chest 2007
CT Pattern: Lobular GGO/Consolidation

Centrilobular Nodules

Lobular Ground Glass or Consolidation

Non-specific – Shah AJR 2003

- Pulmonary edema
- Pulmonary hemorrhage
- Drug Toxicity
- Infections

- Bronchopneumonia – Viral, Bacterial
- More specific if accompanied by tree-in-bud nodules or bronchovascular distribution

CT Patterns: Consolidation

Non-segmental

- Infection – Very Common
- Non-Infectious
 - Occasional
 - Usually subacute
 - Lymphoma
 - Vasculitis
 - COP
 - Sarcoid
 - Invasive Mucinous Adeno Ca

Invasive Mucinous Adenocarcinoma

- Nodules – Centrilobular soft tissue
- Remote areas of ground glass
- Stretching/Attenuation of bronchi - specific

CT angiogram sign and Non-segmental Consolidation

- Well delineated pulmonary vessels against low attenuation (airless) parenchyma
- Historically associated with adenocarcinoma
- Seen in about 1/3 of pneumonias
- Present in about 1/4 of obstructive atelectasis cases
 - Volume loss
 - No air bronchograms
 - Uptake
 - Rare in passive atelectasis
 - Usually high attenuation on CE scans

Re-expansion edema

Bronchopneumonia

Granulomatosis and Polyangiitis

Lymphoma

Adenocarcinoma

Pneumonia

Lymphoma
CT angiogram sign and Non-segmental Consolidation

- Pneumonia

FDG PET

Atelectasis

Low post contrast attenuation favors pneumonia or obstructive atelectasis over passive atelectasis

CT Patterns: Segmental Consolidation

- Infection: Common
- Non-Infectious - Occasional
 - Pulmonary Infarction
 - Lower Lobes
 - Peripheral
 - Truncated apex
 - Segmental consolidation with central lucency –
 - 98% Specific 46% sensitive
 - Air bronchograms absent

CT Patterns: Segmental Consolidation

- Pulmonary Infarction
 - Lower Lobes
 - Peripheral
 - Truncated apex
 - Segmental consolidation with central lucency –
 - 98% Specific 46% sensitive
 - Air bronchograms absent
- Vessel sign = enlarged vessel leading to wedge shaped opacity
 - Specific but uncommon

Pneumonia with Adenopathy on CXR

- Enlarged lymph nodes rarely seen on radiographs
- Confines Ddx of organism causing infection
 - Tularemia
 - "Primary" tuberculosis
- Endemic fungi

- > 3000 Hospitalizations/year for “Cocc” in California
- > $55,000 per admission

Coccidioidomycosis

Pneumonia with Adenopathy on CT

- Prevalence of enlarged lymph nodes on CT > CXR
 - Pneumococcal pneumonia, Stein et al Chest 2005
 - Empyema
 - Usually does not confine Ddx
- Exception: Low attenuation nodes with enhancing rim
 - Mycobacteria,
 - Endemic fungi

Community Acquired Pneumonia - 2013

- Houston – (patients admitted)
 - No pathogen found – 50%
 - Bacteria alone - 25%
 - Strep pneumonia, H. influenza
- Chile –
 - No pathogen found – 35%
 - Bacteria alone – 26%
 - Strep - Mycoplasma
- China –
 - No pathogen – 45%
 - Bacterial alone - 40%
 - Mycoplasma >> Other

Pneumococcal pneumonia, Stein et al Chest 2005

Empyema

Mycobacteria

Endemic fungi

Coccidioidomycosis

Mycoplasma
Community Acquired Pneumonia - 2013
- Virus present in 15-40%
- Sole pathogen slightly more common than mixed infection (with bacteria)
- Detected with polymerase chain reactions (PCR)
- Various organisms
 - Influenza, RSV, Rhinovirus

CT imaging of Viral Pneumonia
- CT of PCR Positive Viral Lower Respiratory Infections
 - Shiley JTI 2010
 - Normal and immunocompromised patients
- 1/3 Normal
- 1/3 Bronchiolitis/Branchitis
- 1/3 Pneumonia

CT of Viral Pneumonia
- CT findings of viral and bacterial pneumonia overlap
 - Miller AJR 2011
 - Herbst AJR 2013
 - RSV - Airway centric pattern
 - Parainfluenza - Similar to RSV

Adenovirus Pneumonia
- Multifocal consolidation or GGO > airway centric pattern
- Pattern may be accentuated in infections with novel adenovirus strains
 - Adenovirus-14 outbreak aka “Bootcamp Flu”
 - Lobar pneumonia > bronchiolitis/bronchitis pattern

H1N1 Influenza – Normal Hosts
- >50% of circulating influenza Jan 2014
- Bronchopneumonia most common
- Bronchiolitis/bronchitis in mild cases in normal hosts and in immunocompromised patients
- COP-like pattern

H1N1 Influenza – Normal Hosts
- Severe disease in normal patients may be caused by immune response
- High titers of non-protective antibody cause complement activation in middle aged pts.
 - Monsalvo, Nature Medicine 2011
Imaging Community
Acquired Pneumonia

- CT patterns useful identifying non-infectious diseases with similar appearance
- CT useful in identifying complications of community acquired
- Ability and necessity of diagnosing specific organism is limited
- Viral pneumonia is more prevalent and more diverse in imaging appearance than previously understood
 - Dependent on organism
 - Dependent on super-infection
 - Dependent on complexities of host-virus interactions

References

