Corrected Congenital Heart Disease for the Thoracic Radiologist
Sanjeev Bhalla, MD

GOALS AND OUTLINE
- To highlight some of the more commonly used surgical procedures for CHD in the adult
 - Review the radiologic impact
 - On protocols
 - On imaging findings
 - Review the more common complications
 - With emphasis on those encountered on cross-sectional imaging
- I have no relevant disclosures

GROWN UPS WITH CHD (GUCH)
- Minor CHD presenting as an adult
- Definitive surgical correction as an adult
- Adults presenting for expected reoperations
- Repair of residual defects after correction
- Heart failure after correction or palliation
- Acquired heart disease in addition to CHD

As Cardiac Radiologists, we are familiar with these indications

CONGENITAL HEART DISEASE
- Most common birth defect (moderate - severe disease 4-6 per 1,000 live births)
 - More recent estimates: 20 per 1,000
- > 85% of neonates will survive to adulthood
- 2004: 0.8 to 1.3 million adults with CHD in US
- Expected to increase 5% per year

In next decade:
- 1/150 young adults will have some form of CHD
- Higher percentage of adults with CHD will consist of more complicated cases
- “The dramatic improvement in survival should lead to a larger number of GUCH patients than children with CHD”

CONGENITAL HEART DISEASE
- US GUCH population on the rise
- The CHD surgeries can confound a Chest CT
 - Need to be aware of some well-known complications
 - May affect a protocol
 - The normal post-op appearance can simulate disease
 - A diseased repair can simulate normal
- Higher incidence of pulmonary hypertension

BUT WHY CARE AS A THORACIC RADIOLOGIST

I have no relevant disclosures
CONDITIONS THAT MAY PRESENT IN ADULTHOOD

- Ebstein Anomaly
- Bicuspid aortic valve
- ASD (secundum) and other septal defects
 - VSDs most common but >85% heal spontaneously
 - Anomalous pulmonary venous return
- Coronary artery anomalies
- Aortic coarctation
- Silent Ductus (PDA)

For sake of time, let us skip these lesions.

ADULTS WITH REPAIRED CHD

- Tetralogy of Fallot
 - Blalock Taussig
- Univentricular physiology
 - Glenn
 - Fontan and Modifications
- Congenital valvular
 - Ross
- Repaired TGA
 - Baffles
 - Jatene

TETRALOGY OF FALLOT (TOF)

- Long-term survival is great (>89% at 30 yrs)
- Definitive repair with homograft and VSD closure is treatment of choice

TETRALOGY OF FALLOT (TOF)

- Radiologic Impact
 - Dilated aortic root (unknown, ?TGF-Beta)
 - Peripheral pulmonic stenoses
 - Coronaries have a clockwise orientation
Patients may undergo palliation with Blalock-Taussig (BT) shunt
- Subclavian Artery to PA
- Contralateral side of the Aortic Arch

Classic uses proximal SCA; now use graft material

TOF Impact:
- Unilateral, ipsilateral rib notching (Classic)
- Vessel in paratracheal region

Complications of BT:
- Thrombosis
- Seroma adjacent to graft
- Occluded ipsilateral PA or stenotic PA
- Enlarged bronchial arteries (MAPCAS)
The goal is to let the lungs (pulmonary arteries) fill passively and convert the heart to a systemic ventricle.

- **Glenn (SVC to PA)**
- **Fontan (RA to PA)**
- **Modified Fontan is the standard**

UNIVENTRICLE HEART

Glenn

- Radiologic Impact
 - Altered flow dynamics: Side with shunt opacifies early with arm injection
- Complications
 - Pulmonary arteriovenous malformations

Fontan

- Radiologic Impact
 - Altered flow dynamics: Depends on the type but classically, left lung opacifies late (unless leg injection)
- Complications
 - Pulmonary arteriovenous malformations
 - Big right atrium (arrythmias)
 - Thrombus
 - Hepatomegaly (cirrhosis and possible HCC)
 - Protein losing enteropathy
CAVOPULMONARY SHUNT

- Sometimes called modified Fontan
- Inferior tunnel may be
 - Intracardiac or extracardiac
 - Fenestrated or not
- Often times imaging is performed to address the question: is the RV failing or is it a conduit failure?

CAVOPULMONARY SHUNT

- Radiologic Impact:
 + Altered flow dynamics: right lung opacifies early and left lung opacifies late
- Complications:
 + Thrombus
 + Other complications are less common than with Glenn or Fontan alone
 + Collateral arteries may be seen with Fontan, Glenn or Cavopulmonary Shunts

CAVOPULMONARY SHUNT

- When there is a fear of subaortic obstruction, the cavopulmonary may be combined with an outlet procedure: Damus-Kaye-Stansel
 - The DKS is an anastomosis of the proximal PA and the Aorta
 - Tricuspid Atresia + TGA
- Radiology Impact:
 - The outflow ill have an odd appearance and may simulate an AA aneurysm
RETIRED CLASSICS

- Waterston-Cooley
 - Formerly used for TOF, tricuspid atresia, P Atresia
 - Ascending Aorta to R PA
 - Complications: stenosis of R PA and PH
- Potts
 - Formerly used for TOF, tricuspid atresia, P Atresia
 - Descending Aorta to L PA
 - Complications: stenosis of LPA and PH

VALVULAR HEART DISEASE

- Bicuspid aortic valve is one of the more common CHDs
- Congenital AS may undergo Ross Procedure
- In a Ross, the native P Valve is used for the A Valve and a cadaveric P valve is used
 - Great idea!
 - Bad idea- 1 valve disease → 2 valve disease
- The native aorta becomes dilated and the main PA is stenotic (does not grow)
TRANSPOSITION

- The definition of transposition:
 - RV gives rise to Aorta
 - AV valves follow the ventricles
 - The coronary arteries follow the ventricles
 - In D-TGA, the RV communicates with the RA ${\text{RA} \rightarrow \text{RV} \rightarrow \text{Aorta}}$; $\text{LA} \rightarrow \text{LV} \rightarrow \text{PA}$
 - In L-TGA, the RV communicates with the LA $\text{RA} \rightarrow \text{LV} \rightarrow \text{PA}$; $\text{LA} \rightarrow \text{RV} \rightarrow \text{Aorta}$

D-TGA

- Arterial switch (Jatene) is now the preferred correction
 - Radiologic Impact: Classic shape of the great vessels (akin to a Dutch hat)
 - Complications [Few]:
 - Coronary artery kinking in the immediate post-op period
 - Branch pulmonary artery stenoses
 - Neoaortic root dilatation
 - Inflow switch (Baffles) were used up until the late 1980’s. Mustard (Pericardium); Senning (Atrial tissue)
 - Radiologic Impact: SVC, IVC are directed to the left ventricle and the pulmonary veins to the right ventricle
 - Complications:
 - Baffle leaks
 - Baffle stenoses
 - Arrhythmias requiring pacemakers
GUCH patients are on the rise
- No longer a pediatric condition
- No longer only a Cardiac Imager’s Issue
- Many of these conditions will affect our protocols (Glenn, Fontan, Cavopulmonary)
- My result in anatomic changes
- Associated with extracardiac complications
 + AVMs
 + Ascending aortic aneurysms
 + Cirrhosis

<table>
<thead>
<tr>
<th>Condition</th>
<th>Treatment</th>
<th>Potential Complications</th>
<th>Radiologic Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetralogy of Fallot</td>
<td>Homograft repair</td>
<td>Aneurysm and pulmonic regurgitation</td>
<td>Pulmonary stenoses related coronary dilation ascending aorta calcified aneurysm of RVOT</td>
</tr>
<tr>
<td></td>
<td>Blalock-Taussig (SDA to PA)</td>
<td>Occlusion</td>
<td>Ipsilateral stenoses and collaterals</td>
</tr>
<tr>
<td>Univentricular Heart</td>
<td>Cavopulmonary</td>
<td>Venovenous collaterals</td>
<td>Altered flow dynamics</td>
</tr>
<tr>
<td></td>
<td>Glenn (SVC to PA)</td>
<td>Pulmonary AVMs</td>
<td>Opacifies ipsilateral lung early</td>
</tr>
<tr>
<td></td>
<td>Fontan (RA to PA)</td>
<td>Large RA (thrombus) Cirrhosis</td>
<td>Altered flow (may require delayed imaging) May simulate aneurysm or mediastinal mass</td>
</tr>
<tr>
<td></td>
<td>Damus-Kaye-Stansel (aortic obstruction)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital Aortic Stenosis</td>
<td>Ross</td>
<td>Pulmonic stenosis Aortic Regurgitation</td>
<td>Bicuspid valves may have dilated aorta</td>
</tr>
<tr>
<td></td>
<td>Damus-Kaye-Stansel</td>
<td>Rare</td>
<td>Dutch hat sign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stenoses and leaks</td>
<td>Altered inflow into ventricles</td>
</tr>
</tbody>
</table>