Approaches to Contrast Enhancement for CTA

Ernest Scalzetti, MD
SUNY Upstate Medical University
Syracuse, NY

• Purpose:
 To understand and design contrast injection protocols for thoracic CTA
• What is CTA?
 – Goals
 – Vascular territories
• Contrast media

What is CTA?

• Definition: contrast-enhanced CT imaging for assessment of blood vessels
• Goals of CTA: to achieve
 – Adequate enhancement of blood vessels
 – Must be able to extract vessels for 3D rendering
 – In the vascular territory of interest
 – Synchronized with the CT acquisition

What is thoracic CTA?

• Vascular territories
 – Multiple interesting territories in the chest
 • Pulmonary arteries
 • Thoracic aorta
 • Heart and coronary arteries
 • Central veins
 • Pulmonary veins
 – They overlap anatomically
 – They enhance at different times

Contrast media

• Iodine concentration of the contrast medium
 – “Adequate enhancement” depends on the task
 – CT numbers, measured in blood vessels
 • Affected by cardiac output and body size
 • Directly proportional to local iodine concentration
 – Enhancement depends on:
 • Amount of iodine delivered per unit time
 – Iodine Concentration x Injection Rate
 • Injection duration
 – Iodine concentration up to 370 mg/dl
Power injection

- Usually described as **volume** and **rate**
 - Example: 75 cc contrast at 5 cc/second
- May also be thought of as **duration** and **rate**
 - Example: 15 second injection at 5 cc/second
 - Conveys the same information
 - Emphasizes contrast bolus duration—**key concept**
 - Duration of at least 10 seconds for CTA

Power injection

- **Volume and rate**
 - Volume usually in the range of 50-150 cc
 - Rate usually in the range of 2.5-6 cc/second

Power injection

- **Phases**
 - Monophasic injection satisfactory for most CTA
 - Single injection of undiluted contrast
 - Saline bolus post-contrast
 - Biphasic injection
 - First phase: injection of undiluted contrast
 - Second phase: injection of contrast-saline mixture
 - Saline bolus post-contrast
 - Preserves RV contrast for functional assessment in combined coronary + cardiac CTA

Power injection

- **Saline bolus**
 - Same rate as contrast bolus
 - Volume usually 30-50 ml

Technique factors

- **kVp**
 - Range of available kVp settings: 80-140
 - Decreasing kVp increases image contrast
 - Decreasing kVp also increases image noise
 - For any given mA • s
Scan timing

- Fixed pre-scan delay method
 - Self-explanatory
 - Can work well with long injection durations
 - Does not attempt to compensate for physiologic variables such as cardiac output
 - Higher cardiac output: contrast appears more rapidly but with a lower, broader peak
 - Lower cardiac output: contrast appears more slowly but with a higher, narrower peak

- Bolus tracking (BT) method
 - Arterial enhancement is a dynamic process
 - "Time-attenuation response" varies, person to person
 - First, a CT image at an anatomic level of interest
 - Next, begin the contrast injection
 - Then acquire monitoring CT images
 - As soon as vessel enhancement rises above a pre-determined threshold, start the CTA

- Circulation time (a.k.a. test bolus) method
 - Short-duration contrast bolus ("test bolus")
 - Given at same rate as for CTA
 - Monitoring images at a fixed anatomic location
 - Frequency of monitoring images: 1-3 seconds
 - Determination of time to peak enhancement
 - Delay time = time-to-peak + something extra
 - Extra delay time depends on vascular territory

- Timing the pulmonary arterial circulation
 - Bolus tracking method
 - Anatomic level
 - Threshold
 - Circulation time method
 - Anatomic level
 - Extra delay

- Timing the pulmonary veins
 - Bolus tracking method
 - Anatomic level
 - Threshold
 - Circulation time method
 - Anatomic level
 - Extra delay
Scan timing

- Timing the thoracic aorta
 - Bolus tracking method
 - Anatomic level
 - Threshold
 - Circulation time method
 - Anatomic level
 - Extra delay

- Timing the heart and coronary arteries
 - Bolus tracking method
 - Anatomic level
 - Threshold
 - Circulation time method
 - Anatomic level
 - Extra delay

- Timing the central veins
 - Long injection duration
 - 40 seconds at 2.5 cc/second (volume 100 cc)
 - Fixed pre-scan delay: 60 seconds

Scan timing

- New directions based on circulation time
 - Modified circulation time method
 - Prospect of measuring physiologic parameters
 - Cardiac output
 - Pulmonary blood volume

Closing thoughts

- CTA challenges
 - Getting adequate enhancement
 - Getting the timing right
- Enhancement depends on:
 - Iodine administration rate
 - Injection rate
 - Injection duration
- Optimal timing depends on adapting to the individual hemodynamics of the patient

Readings