Pulmonary Hypertension

Carole Dennie, MD

Pulmonary Hypertension

carole Dennie MD FRCPC
Professor of Radiology and Medicine
Head, Thoracic and Cardiac Radiology
The Ottawa Hospital

Huntington Beach, California, March 13, 2011

Faculty Disclosure

I have no relevant commercial interests

Objectives

- To outline the role of CT and MR imaging in the diagnostic work-up and management of pulmonary hypertension (PH)
- To review CT and MRI features of PH
- To highlight diseases which cause PH that have typical imaging findings

Outline

- Introduction
- Pathophysiology
- Classification
- Diagnosis
- CT and MR features of PH
- Diseases that have specific imaging findings

Introduction

- PH comprises a variety of conditions that lead to elevated pulmonary arterial pressure
- PH defined as resting mPAP ≥ 25 mm Hg
- PAH further defined as elevation of precapillary pulmonary resistance with normal pulmonary venous pressure (wedge pressure ≤15 mm Hg)

Outline

• Introduction
• Pathophysiology
• Classification
• Diagnosis
• CT and MR findings of PH
• Diseases that have specific imaging findings

Diagnosis of PH in Four Stages

1. Suspicion
 - Non-specific symptoms
 - Dyspnea (60%), fatigue (19%), syncope & chest pain (8%)
 - Median survival without treatment - 2.8 years

2. Detection
 - Screening test of choice
 - Sensitivity 79-100%, specificity 68-98%

3. Classification
 - Physical exam
 - ECG
 - Chest x-ray
 - Pulmonary function tests
 - Transthoracic Echo

4. Evaluation
 - Assessment of RV function at baseline & f/u
 - Confirmation of PH

Dana Point 2008 Classification of Pulmonary Hypertension

- Group I - Pulmonary arterial hypertension (PAH)
 - Idiopathic pulmonary arterial hypertension (IPAH)
 - Heritable
 - BMPR2
 - ALK1, endoglin (with or without hereditary telangiectasia)
 - Unknown
 - Drug- and toxin-induced
 - Associated with (APAH): connective tissue disease, congenital heart disease, portal hypertension, HIV, schistosomiasis, chronic hemolytic anemia, persistent pulmonary hypertension of the newborn
 - *Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis

- Group II – PH due to left heart disease

- Group III – PH due to lung disease

- Group IV – Chronic thromboembolic pulmonary hypertension

- Group V – Pulmonary hypertension with unclear multifactorial mechanisms

Dana Point Classification Simplified

Group I - Pulmonary arterial hypertension
- Idiopathic or genetic
- Drug-induced
- Associated with (APAH)
 - CHD, CTD, portal hypertension, HIV

Group II - PCH, PVOD

Group III - PH due to left heart disease

Group IV - PH due to lung disease

Group V - PH due to CTEPH

Group V - PH due to multifactorial or unclear causes
Imaging Algorithm in Suspected PH

1. PA RV dilatation
 - Underlying pulmonary or cardiac disorder
 - First line for diagnosis: Detect PH
 - Rule out CTEPH

2. Right Heart Catheterization
 - Confirm Dx
 - Pressure measurements
 - Response to vasodilators
 - Rule out specific cause
 - Anatomic assessment of CTEPH
 - PVOD/PCH
 - ILD
 - Intra/extracardiac shunt

3. Functional analysis of RV pulmonary circulation
 - at baseline and follow up

Outline

- Introduction
- Pathophysiology
- Classification
- Diagnosis
- CT and MR features of PH
- Diseases that have specific imaging findings

Pulmonary Hypertension Computed Tomography

- Key role in classification of PH
- Vessels - CTEPH, extracardiac left to right shunt
- Heart - CHD, left heart disease
- Lungs - ILD, emphysema
- Functional assessment
 - Right ventricular functional parameters
 - PA distensibility

CT Features of Pulmonary Hypertension - Vascular

- MPA dilatation > 29 mm
 - Sensitivity - 87%
 - Specificity - 89%
 - No correlation with mPAP in pulmonary fibrosis

- Segmental artery to bronchus ratio > 1 in 3 of 4 lobes
 - Specificity - 100%
 - Correlates with severity of PH
 - Highly reproducible

- Composite index of CT parameter dPA/dAA with echo-derived RVSP
 - mPAP = dAA + RVSP x 0.34 - 8.3
 - Better correlation with mPAP than CT or echo measurements alone
CT Features of Pulmonary Hypertension - Vascular

- Contrast reflux into dilated IVC+/- hepatic veins - specific sign of RV failure at low contrast injection rates (<3 cc/sec)

CT Features of Pulmonary Hypertension - Cardiac

- Right ventricular dilatation
 - RV/LV > 1.0
- Straightening of interventricular septum

CT Features of Pulmonary Hypertension - Cardiac

- Right ventricular dilatation
 - RV/LV > 1.0
- Straightening of interventricular septum

CT Features of Pulmonary Hypertension - Cardiac

- RV hypertrophy:
 - wall thickness > 4 mm
- Septal bowing - leftward bowing of interventricular septum

CT Features of Pulmonary Hypertension - Parenchyma

<table>
<thead>
<tr>
<th>CT Finding</th>
<th>Pathologic/Physiologic Correlation</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrilobular ground-glass nodules</td>
<td>Cholesterol granulomas / Proliferation/lesions</td>
<td>IPAH, Eisenmenger</td>
</tr>
<tr>
<td>Centrilobular ground-glass nodules</td>
<td>Capillary proliferation</td>
<td>PCH</td>
</tr>
<tr>
<td>Serpiginous centrilobular arterioles</td>
<td>Neovascularity</td>
<td>IPAH, Eisenmenger</td>
</tr>
<tr>
<td>Mosaic attenuation</td>
<td>Decreased attenuation (underperfusion)</td>
<td>IPAH, Eisenmenger</td>
</tr>
<tr>
<td>Mosaic attenuation</td>
<td>Increased attenuation (overperfusion)</td>
<td>CTEPH/IPAH/Eisenmenger</td>
</tr>
</tbody>
</table>

Centrilobular Groundglass Nodules

- Cholesterol granuloma, plexogenic arteriopathy, capillary proliferation

Serpiginous Centrilobular Arterioles

- Neovascularity
Mosaic Attenuation

Cardiac MRI

- Essential modality in evaluation of PH
- Gold standard for morphological and functional assessment of RV
 - Prognostic determinant
- Complete picture of right heart/PA morphology and function

Morphologic MRI Features of PH - Cardiac

- RV dilatation
- RV hypertrophy
- Interventricular septal (IVS) flattening or bowing
- Spherical RV
- D-shaped LV
- Tricuspid regurgitation
- RA dilatation
- IVC/hepatic vein dilatation

Cine Imaging: Volumes, Mass & Function

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Clinical Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV dilatation</td>
<td>RV volumes & stroke volumes at baseline predictors of mortality & treatment failure</td>
</tr>
<tr>
<td>RV hypertrophy</td>
<td>Ventricular mass index > 1.5 Correlation with RHC for PH detection</td>
</tr>
</tbody>
</table>

RV dilatation

Phase Contrast Imaging

- Encoding MR signal phase for velocity - flow velocities and volumes
- Obtained in any plane (vs. echo)
- Altered MPA dynamics
 - Average velocity < 11.7 cm/sec (sens. 93%, spec. 82% for PH)
 - PA distensibility
- Qp/Qs = shunt
- Cardiac output/stroke volume – no response to vasodilators

Delayed Contrast Enhancement

- Anteroseptal and inferoseptal RV
- Extent correlates with RV dysfunction and inversely proportional to RVEF

Increased mechanical tissue damage and inflammation
Magnetic Resonance Imaging

Summary

- Detection – does not replace right heart cath
- Estimation of mean PAP – contradictory evidence
- Assessment of treatment response
 - Most promising
 - End-point for research trials

Benza R et al JACC 2008; 52(21):1683-1692

Outline

- Introduction
- Pathophysiology
- Classification
- Diagnosis
- CT and MR features of PH
- Diseases that have specific imaging findings

Dana Point Classification Simplified

- Group I - Pulmonary arterial hypertension
 - Idiopathic or genetic
 - Drug-induced
 - Associated with (PAH)
 - CTD, portal hypertension, HIV
 - PCH, PVOD
- Group II - PH due to left heart disease
- Group III - PH due to lung disease
- Group IV - PH due to CTEPH
- Group V - PH due to multifactorial or unclear causes

With permission

Longstanding Left to Right Shunt

- Systemic to pulmonary shunts
- PH common - prevalence 5-10%
- Treated surgically (Qp/Qs > 1.5 and PAP < 2/3 systemic)

Missed on echocardiography

- Atrial septal defect (ASD) - sinus venosus defect
- Anomalous pulmonary venous return (APVR)
- Patent ductus arteriosus (PDA)

Sinus Venosus Defect

With permission Pena E et al Radiographics 2012; 32:3-32
Pulmonary Veno-occlusive Disease

- Idiopathic disease
- Tobacco exposure, connective tissue disease, cytotoxic drugs, bone marrow transplantation, HIV, sarcoid, Langerhans cell histiocytosis and thoracic radiotherapy
- Accounts for 5-10% of PAH
- Age range 7-70 years (mean 39 years)
- Males:females
- Triad – Severe PAH, pulmonary edema on CXR, normal PA occlusion pressure
- Pathology
 - Intimal fibrosis of interlobular veins and venules leading to venous obstruction and interlobular septal edema

Pulmonary Capillary Hemangiomatosis

- Idiopathic disease with similar predisposing factors to PVOD
- HRCT features similar to PVOD except ground-glass centrilobular nodules more common
- Pathology
 - Proliferation of capillary channels within alveolar walls that progress to nodular lesions which compress venules

Frazier AA et al. Radiographics 2007; 27:867-882

With permission Pena E et al Radiographics 2012;32:9-32

Patent Ductus Arteriosus

Anomalous Pulmonary Venous Return

Pulmonary Veno-occlusive Disease

• Septal thickening, centrilobular ground-glass nodules and mediastinal lymphadenopathy
• 2 or 3 signs – sens 74%, spec 85%
• Absence of findings does not rule out disease

Montani D Medicine (Baltimore) 2008;87:220-233

With permission Pena E et al Radiographics 2012;32:9-32

Pulmonary Capillary Hemangiomatosis

With permission Pena E et al Radiographics 2012;32:9-32
PCH and PVOD
• Clinical presentation indistinguishable
• Prognosis worse than in other forms of PAH
• PVOD and PCH may represent different components of a spectrum of single disease
• 38 lung specimens from 35 patients diagnosed with PVOD (30) and PCH (5) retrospectively reviewed
 – PCH identified in 24 (73%) diagnosed with PVOD
 – PVOD identified in 4/5 patients diagnosed with PCH
• Important to recognize CT findings of PCH/PVOD as fatal pulmonary edema may develop if treated with vasodilator agents

Dana Point Classification Simplified
• Group I – Pulmonary arterial hypertension
 – Idiopathic or genetic
 – Drug-induced
 – Associated with (APAH)
 • CHD, CTD, portal hypertension, HIV
 – PCH, PVOD
• Group II – PH due to left heart disease
• Group III – PH due to lung disease
• Group IV – PH due to CTEPH
• Group V – PH due to multifactorial or unclear causes

Left Heart Disease
• Elevated left atrial filling pressures lead to elevated pulmonary venous and arterial pressures
• Right heart cath to establish diagnosis
 • mPAP > 25 mm Hg
 • High pulmonary capillary wedge pressure > 15 mm Hg

Left Heart Disease
• Common cause of PH
• PAH medications not recommended in left heart disease since safety and efficacy not proven
• Causes
 • Left ventricular diastolic/systolic dysfunction
 • Left sided valvular disease
 • Left heart tumours/obstruction

Aortic Stenosis
• Fibromuscular diaphragm divides LA into posterior and anterior chambers
• Posterior chamber receives pulmonary veins
• Anterior chamber leads to mitral valve
• Variable size of communication between posterior and anterior chambers may cause obstruction

Cor Triatriatum
• Fibromuscular diaphragm
Dana Point Classification Simplified

- **Group I** - Pulmonary arterial hypertension
 - Idiopathic or genetic
 - Drug-induced
 - Associated with (APAHP)
 - CHD, CTD, portal hypertension, HIV
 - PCH, PVOD
- **Group II** - PH due to left heart disease
- **Group III** - PH due to lung disease
- **Group IV** - PH due to CTEPH
- **Group V** - PH due to multifactorial or unclear causes

Lung Disease

- Includes COPD, ILD, hypoxemia (chronic high altitude, sleep disordered breathing)
- High prevalence in COPD (50%) and ILD (43%)
- PH associated with worse prognosis

Lung Disease

- PA dilatation occurs in absence of PH in pulmonary fibrosis
- No relationship between extent of pulmonary fibrosis and mPAP - remodeling of small PA

PH - Lung Disease

- COPD - high prevalence of mild PH
 - Predicts mortality
- Combined centrilobular emphysema and UIP
 - High prevalence of PH and survival

Dana Point Classification Simplified

- **Group I** - Pulmonary arterial hypertension
 - Idiopathic or genetic
 - Drug-induced
 - Associated with (APAHP)
 - CHD, CTD, portal hypertension, HIV
 - PCH, PVOD
- **Group II** - PH due to left heart disease
- **Group III** - PH due to lung disease
- **Group IV** - PH due to CTEPH
- **Group V** - PH due to multifactorial or unclear causes

Chronic Thromboembolic Pulmonary Hypertension (CTEPH)

- Surgically treatable cause of PH
- Approximately 4% of patients after acute pulmonary embolism
- Incomplete resolution and organization of pulmonary emboli
- Asymptomatic until 60% of pulmonary arterial bed obstructed
CTEPH – CTA Vascular Findings

<table>
<thead>
<tr>
<th>Complete occlusion</th>
<th>Bands</th>
<th>Webs</th>
<th>Collateral systemic supply</th>
<th>Mural filling defect</th>
</tr>
</thead>
</table>

CTEPH - CT Parenchymal Findings

- Mosaic perfusion pattern
- Scars from prior infarction

Dana Point Classification Simplified

- **Group I** - Pulmonary arterial hypertension
 - Idiopathic or genetic
 - Drug-induced
 - Associated with (APAH)
 - CHD, CTD, portal hypertension, HIV
 - PCH, PVOD
- **Group II** - PH due to left heart disease
- **Group III** - PH due to lung disease
- **Group IV** - PH due to CTEPH
- **Group V** - PH due to multifactorial or unclear causes

Pulmonary Hypertension with Unclear Multifactorial Etiologies

- Pulmonary artery sarcoma
- Tumour embolism
- Mediastinal fibrosis

Pulmonary Artery Sarcoma

- Most common primary tumor of the pulmonary artery
- Begins in main pulmonary artery and grows antegrade and/or retrograde into right ventricle
- Nodular filling defects may expand arterial lumen
- May enhance with contrast
- May invade into hila

Pulmonary Artery Sarcoma

- Courtesy of John Veinot MD
Peripheral and Central Tumour Embolism

- Tumour fragments stay and grow in pulmonary arteries
- Indistinguishable from bland thromboembolism
- Autopsy > antemortem (6%)
- Common – hepatocellular, renal cell, breast, gastric and prostate CA

Peripheral and Central Tumour Embolism

- Central - mimic acute or chronic PE
- Peripheral - multifocal beading and dilatation
- Ancillary findings
 - Lymphadenopathy
 - Lymphangitis carcinomatosa
 - Intrabdominal masses

Mediastinal Fibrosis

- Excessive fibrotic reaction
- Etiology - Histoplasmosis > other fungi, tuberculosis, sarcoid, idiopathic
- Localized form - calcifications
- Diffuse form - no calcifications
- Narrowing - pulmonary arteries, veins, large airways

Mediastinal Fibrosis

- Excessive fibrotic reaction
- Etiology - Histoplasmosis > other fungi, tuberculosis, sarcoid, idiopathic
- Localized form - calcifications
- Diffuse form - no calcifications
- Narrowing - pulmonary arteries, veins, large airways

Summary and Teaching Points

- There are specific signs of PH on CT and MRI
- CT and MRI are important in classification
- cMRI provides prognostic information and can be used at baseline and to monitor treatment
- Groundglass opacities and septal lines - consider PCH/PVOD as can respond adversely to vasodilator drugs