Society of Thoracic Radiology
Annual Meeting and Postgraduate Course

Back to Basics: Lateral Chest Radiograph

March 11, 2012
Huntington Beach, California

Christopher Lee, M.D.
Cardiothoracic Imaging
Department of Radiology
Keck School of Medicine of USC

Disclosures

• None

Acknowledgements

• Robert Suh, M.D. (UCLA Medical Center)

Introduction

• Education and clinical importance of the lateral chest radiograph have diminished as CT has become more popular
 – Ease of requesting (and recommending) a chest CT when questionable abnormality seen on frontal CXR

• Radiology trainees, in particular, have considerable difficulty in recognizing and interpreting the subtleties of the lateral

Learning objectives

• Review fundamental anatomy, variations, and spaces routinely revealed on the lateral CXR

• Correlate the perspective the lateral view provides with that provided by multiplanar CT

• Reinforce an appreciation of the value of the lateral chest radiograph

Outline

• Trachea
• Retrotracheal space (Raider triangle)
• Large airways
• Arteries and veins
• “Three clear spaces”
• Inferior hilar window
Trachea

- Easily recognizable

- Anterior tracheal stripe
 - Appreciated only on occasion
 - Mediastinal fat
 - Air/lung
 - May not be visibly altered even in the presence of extensive pretracheal pathology

- Posterior tracheal stripe
 - Outlined posteriorly by air in right lung or esophageal lumen and anteriorly by air in tracheal lumen
 - Variable appearance, 1-5 mm
 - Posterior tracheal wall only: thin line
 - Posterior tracheal wall, intervening tissue, collapsed esophagus: thicker stripe or band

Retrotracheal space

- Retrotracheal space (“Raider triangle”)
 - Boundaries
 - Anterior: posterior tracheal wall-right lung
 - Posterior: thoracic vertebral bodies
 - Superior: thoracic inlet
 - Inferior: aortic arch-left lung
 - Size varies with age, body habitus, and lung inflation
Retrotracheal space

- Retrotracheal space ("Raider triangle")
 - Boundaries
 - Contents
 - Esophagus
 - Left recurrent laryngeal nerve
 - Thoracic duct
 - Lymph nodes
 - Lungs

- Pathology
 - Congenital vascular lesions
 - Acquired vascular lesions
 - Esophageal abnormalities
 - Mediastinal masses
 - Infections

- Congenital vascular lesions
 - Left aortic arch with aberrant right subclavian artery
 - Right aortic arch with aberrant left subclavian artery
 - Double aortic arch

- Acquired vascular lesions
 - Aneurysm of aberrant subclavian artery
 - Aortic aneurysm

- Mediastinal masses
 - Intrathoracic goiter
 - Schwannoma/neurilemoma
 - Hemangioma
 - Lymphatic malformation
 - Hematoma

- Infections
 - Tuberculous/pyogenic mediastinitis
 - Abscess

Franquet et al. Radiographics 2002; 22:S231-246
Large airways

- Right upper lobe bronchus (RUL)
 - Anterior margin closely related to RUL artery
 - Superior margin closely related to azygous vein

- Inconsistently visualized
 - Increasing conspicuity → contiguous pathology
Large airways

- Left main-upper lobe continuum (LULC)
 - Consistently visualized distinct landmark
 - Projects below left pulmonary artery

Large airways

- Left main-upper lobe continuum (LULC)
 - Continuum along left mainstem into LUL bronchus
 - Variable in size and shape
 - Occasionally, round lucency within round lucency

Large airways

- Left main-upper lobe continuum (LULC)
 - Continuum along left mainstem into LUL bronchus
 - Variable in size and shape
 - Occasionally, round lucency within round lucency

Large airways

- Posterior wall of bronchus intermedius
 - Intermediate stem line
 - Continuous with right mainstem bronchus, terminating at origin of RLL superior segmental bronchus
 - Approximated posteriorly by azygosesophageal recess
 - Typically projects over LULC
 - Foretells rotation
Large airways

- Posterior wall of bronchus intermedius
 - Intermediate stem line
 - Continuous with right mainstem bronchus, terminating at origin of RLL superior segmental bronchus
 - Approximated posteriorly by azygoesophageal recess
 - Typically projects over LULC
 - Foretells rotation

Large airways

- Posterior wall of bronchus intermedius
 - Intermediate stem line
 - Continuous with right mainstem bronchus, terminating at origin of RLL superior segmental bronchus
 - Approximated posteriorly by azygoesophageal recess
 - Typically projects over LULC
 - Foretells rotation

Large airways

- Posterior wall of bronchus intermedius
 - Intermediate stem line
 - Continuous with right mainstem bronchus, terminating at origin of RLL superior segmental bronchus
 - Approximated posteriorly by azygoesophageal recess

Large airways

- Posterior wall of bronchus intermedius
 - Abnormal > 3 mm

Large airways

- Posterior wall of bronchus intermedius
 - Abnormal > 3 mm
Large airways

- Posterior wall of bronchus intermedius
 - Abnormal > 3 mm

Arteries and veins

- Left pulmonary artery (LPA)
 - Short posterosuperior and lateral mediastinal course
 - When outlined superiorly by air, resembles “miniature aortic arch”

Arteries and veins

- Left pulmonary artery (LPA)
 - Obscured superior border
 - AP window lymphadenopathy
 - Lobulated posterior border
 - Hilar lymphadenopathy
Arteries and veins

- Right pulmonary artery (RPA)
 - In actuality, “right hilar vascular opacity”
 - Conglomerate of pulmonary arteries and veins

- Right pulmonary artery (RPA)
 - Longer lateral mediastinal course than LPA
 - Divides at the edge of the mediastinum
 - RPA = upper aspect of right hilar vascular opacity
 - Interlobar artery = lower aspect of rt hilar vasc opacity
 - Poorly marginated secondary to branching and lack of adjacent lung

- Right pulmonary artery (RPA)
 - Enlargement of right hilar vascular opacity with lobulated contour
 - Hilary lymphadenopathy

- Right ventricular outflow tract
- Ascending thoracic aorta

- Variable visibility
 - Approximation of lung and fat to anterior borders
 - Alignment with path of x-ray beam
Arteries and veins
- Right ventricular outflow tract
- Ascending thoracic aorta

Arteries and veins
- Inferior vena cava (IVC)
 - Occasionally, anterior wall also outlined by lung

Arteries and veins
- Left brachiocephalic vein
 - Retromanubrial opacity

Arteries and veins
- Superior vena cava
- Right brachiocephalic vein
- Innominate artery
- Right subclavian artery
- Composite S-shaped opacity on lateral radiograph
Arteries and veins

- Superior vena cava
- Right brachiocephalic vein
- Innominate artery
- Right subclavian artery

Three clear spaces

- "Spine sign"
 - Increasing lucency as progress down thoracic vertebral bodies
 - Less soft tissue attenuation in lower chest wall compared to upper chest wall/shoulders

Three clear spaces

- Two types of abnormalities
 - Localized opacity with discrete edge
 - Lung mass or consolidation
 - Mediastinal mass
 - Increased density without edge
 - Pleural thickening/disease
 - Lower lobe collapse

Three clear spaces

- Two types of abnormalities
 - Localized opacity with discrete edge
 - Lung mass or consolidation
 - Mediastinal mass
 - Increased density without edge
 - Pleural thickening/disease
 - Lower lobe collapse

Three clear spaces

- Anterior clear space
 - Increasing lucency as progress superiorly from the densest portion of the heart
 - Decreasing width of anterior mediastinum, beginning at PA/ascending aorta level to SVC/brachiocephalic veins
 - Variable degree of lucency
 - Amount of lung protruding behind manubrium
 - Women have decreased retrosternal lucency
Three clear spaces

- Anterior clear space
 - Increasing lucency as progress superiorly from the densest portion of the heart
 - Decreasing width of anterior mediastinum, beginning at PA/ascending aorta level to SVC/brachiocephalic veins
 - Variable degree of lucency
 - Amount of lung protruding behind manubrium
 - Women have decreased retrosternal lucency

- Retrocardiac clear space
 - Increasing lucency as progress inferiorly from between the posterior border of heart and anterior vertebral bodies (infrahilar)
 - Decreasing width of mediastinum
 - Esophagus and azygous vein
 - Air-filled right lower lobe (azygoesophageal recess)

- Anterior clear space
 - Increasing lucency as progress superiorly from the densest portion of the heart
 - Decreasing width of anterior mediastinum, beginning at PA/ascending aorta level to SVC/brachiocephalic veins
 - Variable degree of lucency
 - Amount of lung protruding behind manubrium
 - Women have decreased retrosternal lucency

- Retrocardiac clear space
 - Increasing lucency as progress inferiorly from between the posterior border of heart and anterior vertebral bodies (infrahilar)
 - Decreasing width of mediastinum
 - Esophagus and azygous vein
 - Air-filled right lower lobe (azygoesophageal recess)

- Anterior clear space
 - Opacification with or without discrete edge
 - Anterior mediastinal mass
 - Lung mass or consolidation

- Retrocardiac clear space
 - Opacification with or without discrete edge
 - Lung or mediastinal mass (m. common hiatal hernia)
 - Lung consolidation (edge represents major fissure)
Inferior hilar window

- Sub-area of retrocardiac clear space
 - Avascular area along anteroinferior hilar composite
- Boundaries
 - Right middle lobe bronchus
 - Left lower lobe bronchus
- Devoid of nodular opacities > 1 cm
Conclusions

- The lateral chest radiograph provides a perspective that significantly enhances the evaluation for thoracic disease.
- Awareness of routinely visualized anatomic structures and spaces should facilitate improved interpretation of conventional chest radiographs.

Posttest question

- On a properly positioned (i.e. non-rotated) lateral radiograph, the posterior wall of the bronchus intermedius projects over which structure?
 a) Right upper lobe bronchus
 b) Right hilar vascular opacity
 c) Left main-upper lobe continuum
 d) Left pulmonary artery

References