Objectives

• Review the etiology and anatomic basis of the major congenital lung diseases
• Review their radiographic and cross sectional imaging features
• Review their pertinent clinical features and complications

• No financial disclosures

Outline

• Anomalies associated with airway and lung development
• Resulting in cysts
• Associated with pulmonary vessels

Bronchial Atresia

• Focal atresia or stenosis of a bronchus
• Distal airway patent and accumulates a mucocele
• Location
 – Segmental
 – Lobar
 – Subsegmental
• Most common LUL > RUL > RML

CXR Findings

• Mucocele
• Hyperinflation distal to point of atresia
Congenital Lobar Overinflation

• Congenital Lobar "Emphysema"
• CXR Findings:
 – Severe overinflation
 – Atelectasis of adjacent lobe
• LUL > RML > RUL
• Respiratory distress in newborn
• Only 5% present after 6 months of age
• Surgery is the definitive treatment

Etiology
• Partial bronchial obstruction
 – Intrinsic
 • Deficient cartilage
 • Mucosal flaps
 • Smooth muscle
 – Extrinsic Mass
 • Bronchogenic cyst
 • Vascular e.g. PDA
• 50-55% Cause Not Known

Congenital Pulmonary Airway Malformation (CPAM)

• CCAM now referred to as CPAM
 – Some are not cystic
 – Some are not adenomatoid
 – The group of malformations follow the microscopic features of the pulmonary airways

CPAM

Imaging
- Multicystic lesion
- May be solid
- Usually normal arterial and venous connections.

CPAM and CT
- Cyst larger than 2.5 cm
 - Mostly Stocker Type 1 CPAM
- Cysts < 2.5 cm or solid lesion
 - Difficult to predict Stocker subtype

CPAM

Clinical
- Usually present early in life
- Reported up to the age of 60
- Most often lower lobes
- Dx in adult: careful
- Complications
 - Resp distress in newborn
 - Recurrent pneumonia*
 - PTX
 - BAC (type 1 CPAM)

Bronchogenic Cyst

CT Findings
- Bud of embryonic foregut and tracheobronchial tree becomes separated
- Separated tissue fails to develop further
- Location
 - Mediastinal 2/3
 - Parenchymal 1/3
- Connection to bronchus is unusual

Bronchogenic Cyst

CT Findings
- HU usually 0-20
- Occasionally have higher HU due to proteinaceous contents, hemorrhage or calcium

HU = 8

T1 pre Gad

T1 post Gad

T2
Pulmonary Bronchogenic Cyst
- Most common in lower lobes, usually in medial lung
- Eventually become infected in 20%
- When infected may contain air or air fluid level, resembling abscess

Esophageal Duplication Cyst
- Abnormal esophageal development
- Often contact the inferior esophagus on the right
- Similar imaging features to bronchogenic cyst

Bronchogenic Cysts

Scimitar Syndrome
- Group of disorders of lung and vascular development
- Anomalous pulmonary venous return
 - Complete
 - Partial
- Pulmonary hypoplasia
 - Varying degrees

Additional Disorders:

1. **Lung Development:**
 - Bilateral left sided bronchi
 - Horseshoe lung
 - Diverticula, bronchiectasis
 - Sequestration

2. **Arterial Supply:**
 - 50% PA is reduced in size
 - Systemic arterial supply

3. **Cardiac malformations 25%**
 - ASD
 - VSD, TOF, coarct, left SVC
Proximal Interruption of the PA

• A central pulmonary artery
 • Completely absent or
 • Terminates w/in 1cm of its origin
• Distal pulmonary arteries (in the lung) are intact
• Collaterals:
 – Bronchial artery
 – Transpleural intercostal
 – Internal mammary
 – Phrenic

CXR Findings

• Small hemithorax
• Decreased vascularity
• No identifiable pulmonary artery
• Rib notching
• Similar to Scimitar

“Interrupted” pulmonary artery
occurs:
 – Most common on the right
 – Most often opposite the aortic arch
• Left sided “PA interruption” has higher incidence of CHD, especially Tetrology of Fallot
Proximal Interruption of the PA

- Clinical findings
 - Asymptomatic
 - Dyspnea, exercise intolerance
 - Hemoptysis
 - Bronchiectasis (recurrent infection)
 - Pulmonary HTN (19-25%) – most important prognostic feature

Pulmonary Sequestration

Mass of pulmonary tissue:
1) "Sequestered" from the bronchial tree
2) Systemic arterial supply
- The diagnostic feature on imaging
- Intralobar vs Extralobar:
 - Pleural covering
 - Venous drainage

Intralobar Sequestration

- The "sequestered" lung tissue:
 - Within the visceral pleura of the affected lobe
 - Pulmonary venous drainage
- May be acquired*

Intralobar Sequestration

- Imaging May Vary:
 - Homogeneous solid mass
 - Cystic mass
 - Region of hyperlucent hypovascular parenchyma
- Due to collateral ventilation
 - Infection can occur

Hx: 39 yo with fever & pleuritic left sided chest pain.
Extralobar Sequestration

- The “sequestered” lung tissue is:
 - Within its own pleural envelope
 - Not subject to collateral ventilation
 - Does NOT contain air
 - Rarely infects because it is enclosed
 - Venous drainage to systemic veins

Extralobar Sequestration

- Imaging:
 - Solid vascular mass
 - Most often left base near diaphragm

Sequestration: Goals of Imaging

1) Delineate the extent of the lesion
2) Identify artery or arteries
3) Identify venous drainage
4) Evaluate for involvement below the diaphragm

CONCLUSION

- Congenital lung disease is RARE
- These disorders have characteristic imaging features