Viral Infection
Wallace T. Miller, Jr., MD

Pulmonary Infections with Respiratory Viruses

Wallace T. Miller, Jr. MD
Associate Professor of Radiology and Pulmonary and Critical Care Medicine
University of Pennsylvania Health System
millerw@uphs.upenn.edu

Objectives:
To learn:
- The common causes of viral LRTI
- Some basic facts about viral infection
- The common imaging appearances of viral LRTI

Significance:
Viral pneumonias account for 9-29% of all community-acquired pneumonias requiring hospitalization in adults*.

Lim WS. Thorax 2001; 56:296-301.
Marston BJ. Arch Intern Med 1997; 157:1709-1718.

Viral Structure:
- Simple, ingenious organism
- Uses host reproductive machinery to replicate itself
- Payload
 - RNA or DNA genome
 - Enzymes to initiate viral replication
- Delivery system
 - Protective protein coat (capsid) + lipid membrane
 - Virus encoded binding proteins

Virus-Cell Interactions
- Attachment
 - Viral proteins bind cell surface molecules
- Penetration and disassembly
 - Endocytosis of enveloped viruses
- Genome replication
 - RNA - cell ribosomes or viral RNA polymerase
 - DNA - entry into nucleus
- Cell death (apoptosis)
 - Cell defense vs. viral spread
 - Viral genome - reduce apoptosis - spread
 - DNA viruses - block apoptosis - latency

Viral Causes
Lower Resp Tract Infections
Community Acquired

Influenza
RSV
Adenovirus
Parainfluenza
Metapneumovirus
Other
Coronavirus
Rhinovirus
Varicella

Mechanism:
- Inspired respiratory droplets

Influenza
Figure 162-1
RSV
Figure 155-2
Adenovirus
Figure 139-2
Parainfluenza
Metapneumovirus
Other
Coronavirus
Rhinovirus
Varicella
Viral Causes
Lower Resp Tract Infections
Opportunistic Viruses

- ONLY Herpes group
 - Simplex I & II (HSV)
 - Cytomegalovirus (CMV)
 - Varicella Zoster (VZV)

- Mechanism
 - Latency (nerve cell/s, lymphocytes)
 - T cell immune suppression
 - Reactivation
 - Viremia - lung involvement

CMV EM?

Herpes simplex EM?

Community Acquired Viruses:
Clinical Manifestations

- All cause "flu-like" symptoms
- Heralded by upper tract infection
 - Fever, coryza
- Lower tract disease
 - Cough, dyspnea, sputum production
 - Tracheobronchitis
 - Bronchiolitis
 - Pneumonia
- Duration can be prolonged
 - 7-21 days

Imaging Features:
Community Acquired Viral Infection

- PENN study (CAV LRTI)
- Definition of Disease
 - Positive viral PCR of NP swab or BAL
 - Lower resp tract symptoms
 - New onset dyspnea, cough or sputum production
- Exclusions
 - Concomitant bacterial pneumonia
 - Pre-existing diffuse lung disease
- Control Group
 - Individual with negative PCR assay
 - Lower resp tract symptoms

Imaging Features:
Computed Tomography

- Population
 - 97 index cases
 - 267 negative controls
- Virus
 - Influenza 56 (58%)
 - RSV 24 (25%)
 - Adenovirus 11 (11%)
 - Parainfluenza 6 (6%)

Imaging Features:
Computed Tomography

- All CAVI similar appearance
- 3 broad patterns of appearance
- No imaging findings/Normal ~ 1/3
 - Imaging insensitive for CAVI
- Tracheobronchitis/bronchiolitis pattern ~ 1/3
- Multifocal pneumonia pattern ~ 1/4
 - Often confused with aspiration pneumonia
- Variable appearance ~ 1/20

Imaging Features:
Normal CT

- Clinical history of severe symptoms/normal CT

Image of Normal
Imaging Features:
Bronchitis/Bronchiolitis Pattern

- Tree-in-Bud
- Br wall thick

41M HIV+ 1 mo cough, dyspnea, night sweats
RSV bronchiolitis

Imaging Features:
Bronchitis/Bronchiolitis Pattern

- Tree-in-Bud
- Br wall thick

41 man fever, cough, dyspnea
RSV bronchiolitis

Imaging Features:
Multifocal Pneumonia Pattern

- Multifocal GGO
- Multifocal consolidation

21 pregnant W fever, cough, myalgias
Influenza A

Imaging Features:
Diffuse Pneumonia Pattern

- Diffuse GGO
- Diffuse consolidation

Image of Diffuse GGO Pneumonia

Imaging Features:
Focal Pneumonia Pattern

Image of Focal Pneumonia

- Clinical history

Imaging Features:
Comparison with Controls

<table>
<thead>
<tr>
<th>Infection Pattern</th>
<th>Viral LRTI</th>
<th>Non-Viral LRTI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal/No Acute Disease</td>
<td>34 (35%)</td>
<td>90 (34%)</td>
<td>0.8</td>
</tr>
<tr>
<td>Bronchitis/ Bronchiolitis</td>
<td>32 (33%)</td>
<td>27 (10%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Focal Pneumonia</td>
<td>6 (6%)</td>
<td>30 (11%)</td>
<td>0.17</td>
</tr>
<tr>
<td>Multifocal Pneumonia</td>
<td>23 (24%)</td>
<td>76 (28%)</td>
<td>0.42</td>
</tr>
</tbody>
</table>

- Bronchiolitis pattern: 80-85% specificity CAVI
- Pneumonia pattern: non specific
Imaging Features:
Subgroup Analysis

- Individual viruses tend to have a typical appearance
- RSV
 - Bronchiolitis pattern
- Adenovirus
 - Pneumonia pattern
- Influenza
 - Normal CT

* unpublished data

Other Community Acquired LRTI:
The Lesson of SARS

- Coronavirus epidemic
 - Novel virus
 - Increased prevalence severe disease (pneumonia)
- Occasionally other respiratory viruses will produce “Flue-like” disease
- Sporadic - epidemic - pandemic

Radiograph of SARS

Community Acquired LRTI:
Chest Radiographs?

- Insensitive for disease
 - Influenza: normal exam in ~
- Pneumonia
 - Usually detected
 - Multifocal - diffuse consolidation
- Bronchiolitis
 - Faint bronchial wall thickening (“peribronchial cuffing”)
 - Small fuzzy nodules
 - difficult to detect
 - Underdiagnosis/overdiagnosis

Radiograph of viral bronchiolitis

Radiograph of SARS

RSV bronchiolitis
Viral Lower Respiratory Infections: Conclusions

- Community acquired
 - 4 common causes: influenza, RSV, adenovirus, parainfluenza
 - Occasionally others: metapneumovirus, coronavirus (SARS), 1-2 VZV
 - Inhalation of infected droplets

- Opportunistic
 - Ability to remain dormant
 - Herpes group viruses: CMV, HSV 1, HSV 2, VZV
 - Reactivation - Viremia - Pneumonia

Imaging Features: Do Opportunistic Viruses Look Different?

- CMV and HSV
 - reactivation
 - viremia
 - pneumonia

- Diffuse GGO more common appearance?
 - Literature references that this is typical appearance

Imaging Features: CMV

Viral Lower Respiratory Infections: Conclusions

- 3 Imaging Patterns of community acquired viral infection
 - No Imaging findings/ Normal exam
 - Imaging insensitive for viral LTRI

- Bronchitis/bronchiolitis
 - Bronchial wall thickening, Tree-in-bud
 - Specific sign of viral infection in appropriate clinical setting

- Pneumonia
 - Multifocal GGO/consolidation
 - Diffuse GGO/consolidation rare
 - Non-specific finding often confused with aspiration

- Different appearance of opportunistic infections?
 - Diffuse GGO
 - Different mechanism of spread - viremia
Influenza: Seasonal Flue and the New H1N1 Virus
• If time will talk specifically about influenza and new epidemic

Influenza: Viral Structure
• 3 strains (A, B, C)
 • Only A can cause pandemics
 • C does not cause human respiratory infection
• Single stranded, - sense, RNA genome
• Enveloped virus
 • 2 primary surface spikes
 • Hemagglutinin (HA)
 • Neuraminidase (NA)

Influenza: Epidemiology
• Seasonality:
 • Temperate: winter peak - summer trough
 • Tropical: year round low level disease
• At risk populations
 • Infants
 • Elderly
 • 3rd trimester pregnancy (rel T cell immunosuppression)
 • Immunosuppressed (HIV, organ Tx)

Influenza: Spread
• Epidemic
 • Outbreak confined to one location
 • Modification of existing virus (Antigenic drift)
 • Partial immunity in population
 • Attack rates 10-20%
 • Single winter peak
• Pandemic
 • Outbreak that spreads rapidly across the world
 • Emergence of a new virus (Antigenic drift)
 • No immunity in population
 • Attack rates increased
 • Infection out of season
 • Multiple waves of disease

Influenza: Antigenic Shift and Human Pandemics
• Large diverse avian reservoir of Influenza A
• No significant transfer avian influenza to humans
• Isolated from human influenza
• Progressive drift away from human strains
• Antigenic Shift theories
 • Intermediate Host: Pigs
 • Can be infected with both human and avian influenza A
 • Gene rearrangement during coinfection or evolution avian virus in pig
 • New strain capable of infecting humans
 • Direct Transmission
 • Avian strain mutates capability to infect humans
• With antigenic Shift: Human Pandemic
Influenza: Pathogenesis

- Infectious aerosols (cough, sneeze)
- Infect columnar epithelial cells and PML’s
 - Epithelial cells:
 - Diffuse inflammation of trachea and bronchi
 - Viral replication cell apoptosis
 - PML’s: Diminished chemotaxis, phagocytosis
- Viral shedding
 - Infect adjacent cells
 - Spread to other hosts
- Illness severity α quantity viral shedding

Influenza: Host Response

- Systemic Antibodies (IgM, IgG)
 - To HA and NA receptors M and NP proteins
 - Protects against re-infection with homologue/similar strain
- Mucosal Antibodies (IgA, IgG)
 - Protects against re-infection with homologue/similar strain
 - More important than systemic antibodies?
- Cellular response (cytotoxic T-cells)
 - Primary means of clearing infection

Influenza: Infection

- Influenza B milder than Influenza A?
- Systemic effects (Rhinitis, run - 8 days)
 - Fever, chills, HA, myalgias, malaise, anorexia, coryza
 - Predominance of systemic effects distinguish Influenza from other viral RTIs
- Pulmonary Involvement (~10%)
 - Tracheobronchitis (several days into infection)
 - Pneumonia
 - Primary viral
 - Secondary bacterial
 - Initial improvement/recrudescence of Fever, cough
 - Strep pneumonia, H. Influenzae, Staf. Aureus
 - Croup
 - Exacerbation COPD