ADULT CONGENITAL LUNG DISEASE

Outline Congenital Lung Disease

- Anomalies associated with lung development and airways
- Anomalies resulting in cysts
- Anomalies associated with pulmonary vessels

Pulmonary Agenesis

- Complete absence of a lung
- Absent bronchi and vascular supply
- Can be incidental finding in adults
- Infant: associated anomalies
 - Congenital heart dx
 - Tracheo-esophageal atresia
 - Renal anomalies

Tracheal Bronchus

- Supernumerary
 - Normal branching of RUL
 - Accessory bronchus
- Displaced
 - One branch of RUL is missing
 - Normal branch from abnormal position
 - Segmental or subsegmental
 - Usually supplies apical segment
- "Pig bronchus"
 - Occasionally subject to disease
 - Infection, bronchiectasis

Accessory Cardiac Bronchus

- Ends blindly
- May be assoc with small amounts of pulm parenchyma
- Possible source of infection or hemoptysis

Bronchial Atresia

- Focal atresia or stenosis of a bronchus
 - Lobar
 - Segmental
 - Subsegmental
- Distal airway patent
- Distal obstructed lung is hyperinflated due to collateral air drift
- Most common LUL > RUL > RML
Bronchial Atresia

- Imaging
 - Mucous plug or mucocele
 - Hyperinflation in the segment distal to the mucocele

Congenital Lobar Overinflation

- Congenital Lobar "Emphysema"
- Findings:
 - Severe overinflation
 - Atelectasis of adjacent lobe
 - Respiratory distress in newborn
- Only 5% present after 6 months of age
- Most treated surgically

CXR and CT: CLO

- Few vessels
- Air trapping with lobar hyperinflation
- Atelectasis of adjacent lung

Congenital Lobar Overinflation

- Thought to be secondary to partial bronchial obstruction
 - Intrinsic
 - Deficient cartilage
 - Mucosal flaps
 - Stenosis/malacia
 - Extrinsic Mass
 - Bronchogenic cyst
 - Vessel eg PDA
- LUL > RML > RUL
Congenital Pulmonary Airway Malformation (CPAM)

- **Spectrum of airway malformations (hamartomas)**
- **Involve various portions of the tracheobronchial tree**
- **CCAM referred to as CPAM**
 - Some are not cystic
 - Some are not adenomatoid
 - Spectrum follows the microscopic features of the pulmonary airways

Congenital Pulmonary Airway Malformation (CPAM)

- **Type 0: Tracheobronchial Origin**
- **Type 1: Bronchial/Bronchiolar**
 - The large cyst lesion
- **Type 2: Bronchiolar Origin**
 - The small cyst lesion
- **Type 3: Bronchiolar/Alveolar Duct**
 - The adenomatoid lesion
- **Type 4: Distal Acinar Origin**
 - The “unlined cyst” lesion

Congenital Pulmonary Airway Malformation (CPAM)

- **Multicystic mass**
- **Cysts may communicate with airways**
- **Usually normal arterial and venous connections.**
- **DDX**
 - Cystic bronchiectasis
 - Sequestration
 - Intrapulmonary bronchogenic cyst
 - Prior infection with pneumatocele

CPAM and CT

- **Cysts larger than 2.5 cm**
 - Mostly Stocker Type 1 CPAM
- **Cysts < 2.5 cm or solid lesion**
 - Difficult to predict Stocker subtype
- **Difficult to differentiate Type 2 CPAM from other types on CT**

CPAM

- **Most often lower lobes**
- **Can involve entire lobe**
- **Usually present early in life but reported up to the age of 60**
- **Complications**
 - Resp distress in newborn
 - Recurrent pneumonia*
 - Spontaneous PTX
 - BAC (type 1)

CPAM Type I
Cysts
- Bronchogenic
- Esophageal duplication cysts

Bronchogenic Cysts
- Abnormal bud of the embryonic foregut and tracheobronchial tree
- Separated focus of tracheal-bronchial tissue does not develop further
- Connection to bronchus is unusual
- Location
 - Mediastinal 2/3
 - Parenchymal 1/3

Bronchogenic Cyst CT
- HU usually 0-20
- Occasionally have higher HU due to proteinaceous contents, hemorrhage or calcium

HU = 8

T1 pre Gad

T1 post Gad

T2
Pulmonary Bronchogenic Cyst
- Most common in lower lobes, usually in medial lung
- Eventually become infected in 20%
- When infected may contain air or air fluid level, resembling abscess

Bronchogenic Cysts
- When infected can look like an abscess
- Rapid increase in size can occur from infection or hemorrhage
- When large can exert mass effect

Esophageal Duplication Cyst
- Abnormal esophageal development
- The muscularis propria of the esophagus is contiguous with the muscular layer of the cyst wall
- Often inferior and on the right
- Similar imaging features to bronchogenic cyst

Anomalies associated with vessels

Pulmonary Arteriovenous Fistula
- Direct communication between artery and vein without intervening capillary bed
- 67% are associated with OWR
- Multiple in 33%
- Most commonly congenital, can be acquired:
 - CHD (Glenn and Fontan)
 - Chronic liver dz
 - Infection (TB and actinomycosis)
- Lower lobe 50-70%

Pulmonary arteriovenous fistula
- Simple AVM: most frequent
 - Consists of dilated vascular sac connected to one feeding artery and one draining vein
 - Enlargement of the vascular sac is common, occasionally rapid enlargement
- Complex AVM (20%):
 - Lesions with one or more feeding arteries and/or draining veins
 - More difficult to treat
Pulmonary arteriovenous fistula

- Clinical manifestations
 - None when small
 - Hypoxemia
 - R to L shunt
 - Embolic complications: stroke and cerebral abscess
 - Polycythemia
 - Pulmonary hemorrhage

Scimitar Syndrome

- Group of disorders of lung and vascular development
 - Anomalous pulmonary venous return
 - Complete
 - Partial
 - Pulmonary hypoplasia
 - Varying degrees

Additional Disorders:

1. Lung Development:
 - Hypoplasia
 - Bilateral left sided bronchi
 - Horseshoe lung
 - Diverticula, bronchiectasis
 - Sequestration
2. Arterial Supply:
 - 50% PA is reduced in size
 - Systemic arterial supply
3. Cardiac malformations 25%
 - ASD
 - VSD, TOF, coarct, left SVC
Proximal Interruption of the PA

- Central pulmonary artery completely absent (proximally interrupted)
- Distal pulmonary arteries (in the lung) are intact and are supplied by collaterals:
 - Bronchial artery
 - Transpleural intercostal
 - Internal mammary
 - Phrenic
- Affected lung is hypoplastic

Proximal Interruption of the PA

- “Interrupted” pulmonary artery occurs:
 - Most common on the right
 - Most often opposite the aortic arch
- Left sided “PA interruption” has high incidence of CHD, especially Tetrology of Fallot

Proximal Interruption of the PA

- Clinical findings
 - Dyspnea, exercise intolerance
 - Hemoptysis, bronchiectasis
 - Pulmonary HTN (19-25%)- exacerbated by high altitude or pregnancy

Pulmonary Sling

- Anomalous origin of left pulmonary artery from the right PA
- Left pulmonary crosses between the esophagus and trachea
- Can cause airway obstruction/malacia

Pulmonary Sequestration

- Mass of disorganized pulmonary tissue:
 1. Lacks normal bronchial communication (i.e. "sequestered")
 2. Systemic arterial supply
 - Characteristic feature on imaging
 - One or more arteries

- Intralobar vs Extralobar:
 - Pleural covering
 - Venous drainage

Intralobar Sequestration

- The "sequestered" lung tissue:
 - Within the visceral pleura of the affected lobe
 - Pulmonary venous drainage

- More common
- Most often left sided, 2/3 near diaphragm
- Arterial supply thoracic aorta
- May be acquired

Intralobar Sequestration

- Imaging:
 - Homogeneous solid mass
 - Cystic mass
 - Region of hyperlucent hypovascular parenchyma (collateral ventilation and air trapping)
 - Due to collateral ventilation infection can occur

Hx: 39 yo with pleuritic chest pain. Treated for pneumonia

6 weeks later.
Extralobar Sequestration

- The “sequestered” lung tissue is:
 - Within its own pleural envelope
 - Not subject to collateral ventilation
 - Does NOT contain air
 - Rarely infects because it is enclosed
 - Venous drainage to systemic veins

Extralobar Sequestration

- Imaging:
 - Solid, vascular mass
 - Most often left base near diaphragm

- Arterial supply:
 - Low thoracic
 - Abdominal aorta
Sequestration: Goals of Imaging

1) Delineate the extent of the lesion
2) Identify artery or arteries
3) Identify venous drainage
4) Evaluate for involvement below the diaphragm

CONCLUSION

- Congenital lung disease in the adult patient is RARE
- These disorders have characteristic imaging features which assist their diagnosis