Objectives
Understand the various imaging techniques of aorta and valve
Review the Normal Anatomy
Review the imaging presentation of the pre- and non-operative
Review the post-operative imaging

Aortic Valve

Advantages
- No radiation
- Multiplanar anatomy
- Flow quantification
- Functional analysis
- About the same cost/charge as Echo

Disadvantages
- Time
- Processing of data
- Limited to planes of data acquisition
- Pacemakers, other contraindications for MR
- Limited evaluation of prosthetic valves

Anatomy: MR Sequences
- HASTE (Black Blood Static Sequence) –
 - Breath Hold
 - Transaxial
 - Coronal
 - Sagittal
- FISP (Bright Blood Static Sequence) –
 - Axial
All EKG-gated.

Function: MR Sequences
- Bright Blood Cine –
 - Cine GRE (TurboFLASH, fast SPGR, TFE/FFE)
 - Rely on TOF effects, use inflow enhancement for image contrast.
 - Blood pool to myocardial CNR can degrade with short TR’s.
 - Breath hold
Routine Cardiac Scan Planes

- Vertical (2-chamber) long axis
- Horizontal (4-chamber) long axis (stack)
- Short axis (stack)
- Aortic valve
 - Aortic cross-section (flow quantification)
- Pulmonic valve
 - Pulmonic cross-section (flow quantification)

Phase contrast Imaging

- Phase shift are proportional to velocity in direction of gradient
- Signal is velocity encoded
 - Gray no velocity
 - White movement in one direction
 - Black movement in opposite direction
- VENC – maximum velocity
 - Peak velocity
- \(\rho = 4(v_p)^2 \)

Flow Quantification

- Image plane perpendicular to aorta (flow of blood)
 - Approximately 1 cm above the valve
 - Phase contrast images should look black (left)
 - If image white (right) then repeat sequence by increasing the velocity scale to 300.

CT of Cardiac Valves

- Advantages
 - Anatomic evaluation
 - Wide range of multiplanar capabilities
 - Functional analysis
 - Flexibility in post processing
 - Pacemakers and prosthetic valves
 - May not need to Cardiac Gate for evaluation

- Disadvantages
 - Radiation
 - No flow quantification
 - Irregular rhythm
 - Cannot be performed on all scanners

Aortic Valve
Aortic Stenosis

Types

- Calcific AS – process similar to atherosclerosis
- Bicuspid AS – Most common in younger individuals (<65 years); 2 to 3% of population
- Rheumatic AS – Uncommon, associated with Mitral disease.

Aortic Stenosis

Scale -300 to 300

Velocity >= 4.0 m/s

Gradient >= 40 mmHg

V = 2.9 m/s
Grad = 34 mmHg

V = 1.9 m/s
Grad = 14 mmHg

Bicuspid Aortic Valve

Valve Area

Area < 1.0 cm²
Bicuspid Aortic Valve

Coartation

Sub-aortic Membrane

Aortic Regurgitation

Area = 0.25 cm²

Regurgitant fraction ≥50 %
Regurgitant orifice area ≥0.30 cm²
Percutaneous Valve Repair

- Aortic Measurements
 - Measured at the valvular attachments
- Femoral vessels
 - Minimum diameter
 - Plaque burden

Valve Measurements

Aortic Dissection

Marfan’s Syndrome

Post-Operative Evaluation

- General surveillance
 - Prosthetic valve function
 - Abnormal prosthetic valve echo
 - CT
 - Fluoroscopy
- Post-operative Evaluation
 - Peri-valve breakdown
 - Abscess
Prosthetic Valves

- Valve Failure
 - Tearing or breakage of components
 - Thrombus
 - Gradually from calcifications or thrombus formation
- Prosthetic valve endocarditis
 - Due to peri-operative contamination or hematogenous spread.
 - PVE occurring after 60 days

CT of St. Jude’s Mitral Valve

CT of Medtronic-Hall Aortic Valve

Fluoroscopy of Aortic Valve

120 degrees

St. Jude’s Mitral Valve
- Open <15 degrees
- Closed 120 degrees

CT of St. Jude’s Aortic Valve
Conclusion

- Echocardiography remains the backbone of valvular imaging
- Advances in MR and CT
 - Functional analysis
 - Anatomic analysis
- Valve Repair and replacement has increased
 - Knowledge of Postoperative normal
 - Knowledge of Postoperative complications